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An algorithm for simulating the isothermal 
hysteresis in the stress-strain laws of shape 
memory alloys 

R. D. S P I E S *  
Department of Mathematics, Iowa State University, 400 Carver Hall, Ames, 
1,4 50011, USA 

An algorithm for simulating the hysteresis in the stress-strain laws of Shape Memory Alloys 
(SMAs) is presented. The algorithm stores the sequences of dominant input extrema of the 
strain history allowing points in the interior of the outer-most loops to be reached, in 
agreement with the behaviour observed experimentally. A numerical example is shown. 

1. I n t r o d u c t i o n  
The hysteresis phenomenon which characterizes the 
stress-strain relations of pseudoelastic materials is due 
mainly to the existence of local and/or global memo- 
ries. This can be easily seen by the fact that a particu- 
lar load can produce different deformations depending 
on the initial state which, in terms, depends on the 
strain history (see, for instance [13, p. 78, Fig. 2.14). In 
a series of articles l-2-6], Falk introduced a model that 
captures several important characteristics of shape 
memory alloys (SMAs). Falk's model consists essen- 
tially of defining a non-convex thermodynamic poten- 
tial, T, in the form of a Hemholtz free energy density, 
which is considered to be a function of macroscopic 
strain, e, and the absolute temperature, 0. The func- 
tion, T, is chosen in such a way that it satisfies all the 
underlying hypotheses of the Landau theory of phase 
transitions [-73 and, at the same time, it reproduces the 
experimentally observed behaviour of SMAs. A simple 
form of this function, T, is found to be the so-called 
Landau-Devonshire potential 

kl/(f;, O) = tlJo(O ) -{- ~2(0 -- O1)g 2 --  ~4E 4 -[- (~6~6 (1) 

where To(0) is some smooth function of,the temper- 
ature, ~2, u4, u6 are positive non physical constants 
and 01 is a critical temperature, all depending on the 
material being considered. To avoid this dependence 
on the material, dimensionless quantities are introduc- 
ed by means of the following normalization. 

f =  ~ a~ T (2a) 

e = - -  e (2b) 
k ~4 / 

~6~2 1 (2c) t =  

2 

fo = ~ ~o(0) (2d) 
~4 

The normalized free energy is then independent of any 
particular parameter and takes the form 

, , e ,  + + (3) 

(see Fig. 1). Using this representation for the free en- 
ergy, several thermodynamic functions are derived. 
The stress-strain relations, for example, are given by 

cY=~ee=2 t +  e - 4 e 3  + 6e 5 (4) 

(see Fig. 2). Falk's idea has already been incorporated 
into several dynamic models that require an explicit 
form for the free-energy potential [8-123 . However, it 
is not difficult to realize that the potential (Equation 1) 
does not completely capture the behaviour of SMAs. 
We observe, for example, that the same stress-strain 
relation is obtained, independently of whether the 
material is under loading or unloading. In  particular , 
for intermediate temperatures, in the non-monotonic 
region, Equation 4 predicts states on one of the 
diagonals of the hysteresis loop which is observed 
experimentally in an SMA material. Furthermore, 
there are materials for which certain particular load- 
ing-unloading regimes result in "nested" hysteresis 
loops in the corresponding stress-strain relations. In 
fact, isothermal, uniaxial stretching experiments under 
controlled deformation performed in CuZnA1 alloys 
[133 (see Fig. 3) have shown that it is possible for any 
state within the outermost loops to be reached. These 
states can be both the result of unloading after partial 
yield, due to strain hardening or the result of reloading 
after a partial recovery. In order to capture this type of 
behaviour, a different approach is needed. 
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Figure 1 The normalized Landau-Devonshire potential. 
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Figure 2 Stress-strain laws obtained with the Landau-Devonshire 
potential. 

2 .  T h e  m o d e l  , 
The approach followed in this work consists essen- 
tially of par.ametrizing the first-order transition curves 
and introducing suitable parameters in order to take 
into accountdocal memories and phase fractions. 

For a fixed temperature 0, we assume that the 
outermost 10op is completely characterized by the 
eight values ~, oh, 1 ~ i ~< 4, with 0 ~< Sl < a2 < e3 < 
g4,' 0 ~ 0-j. ~ 0" 2 < 0-3 ~ (3"4, a s  s h o w n  in  Fig. 4. 

These eight critical values will strongly depend on 
the temperature, 0. Note that c~ 3 estimates the 
modulus of elasticity in tension corresponding to the 
temperature 0. 
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Figure 3 Isothermal stress-strain relations obtained from uniaxial 
stretching experiments under controlled deformation performed 
in CuZnA1 alloys. (a) Unloading after partial yield; (b) interior 
"nested" hysteresis loops; (c) reloading after partial recovery 1-13]. 

Let 0-//= {r~( : )}0~.<l  be the family of curves 
parametrized by 13 shown in Fig. 5 (the superscript 
U stands for unloading). The curve F~(a) is defined 
explicitly below. Let 

a~'u-" 13sl + (1 - 13)e2; c~ '~-13al  + (1 - 13)cy3 
(5a) 

(Sb) 

- ~ '  -" 130-~ + (1  - 1 3 ) ~ 3  

(Se) 
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Figure 4 Characterization of the outermost loops by using the eight 
critical values a~, ch, i = 1, . . . ,4 .  

and define F~(a) by 

'_- 

'0-1 - - g  for 0 ~ < ~ < ~  
El 

0-~,U __ 

0-, 4 c~., u - a,0-t (~ _ ~,) fo r  ~, 4 a < E~ 'u 

4 ,U - 4,u 
0-a,u+ u ) for . < , <  

- 0-"uU 4 4 'U 0-~,u+ ar ' u - ~ f '  ( z - a ; ' u )  for ~<e< 

0-4 -- 02,  U for4 
E4 % -  

0-4 - -  0-2 
0-z + - - ( E  - ~ )  for ~/> ~4 

E4 -- ~ (6) 

Similarly, let ~ = {F~(.)}0~<~<~ be the family of 
curves parametrized by [3 shown in Fig. 6 (the super- 
script L stands for loading). The curve F~ (a) is defined 
by the parameters 

~ ' L ~ "  [3~ 3 -~-(1 - -  [3)~1; 0-~'L~" [30-2 -~(1  ~ [3) 0-1 

(7a) 

(7b) 

E~ 'L~"  ~I~3 -~- (]  - -  [3)E4; 0-~ 'L~"  [30- 2 -~- (1 - [~)0-4 

(7c) 

and 

0-1 --g 

E1 

0-~,L __ 0-1 
0-~ + (a - E~) 

g~,L _ gl 
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4 , L _  
0-~,L --  1,L 

0-~,L _]_ ~ , L  - -  ~3' ~ (~ - -  E~,L) 
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C 4 -- 1~ 3 
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Figure 5 F~J(8): (a) ~ = O; (b) I~ = 1; (c). 0 < I~ < 1. 

Observe that r~ ( . )  -- roY(.), r~ ( . )  - r~( . ) ,  ~ ,L  = 
a~ 'u and ~ , L =  0-~,u. 

We add dynamics to the model as follows. Let 
F~ ~ be our initial curve, 0 ~< [30 ~< 1, Wo = U or L. Let 
[3(t = O) = [30, w( t  = O) = Wo and (~o, 0-o) a point on 
F~ ~ (i.e. 0-0 = F~ ~ (ao)). Let ~(t), 0 ~< t ~< r be our strain 
input, where T denotes a certain prescribed final time. 
We assume that E is a continuous function of t on the 
interval [0, T ]  and satisfies the initial condition 
~(0) = ~o. 

The points (E(t), 0-(t)) will remain on the curve 
F~3 until the next relative extremum of E(t) occurs. In 
general, [3(0 and w ( t )  will remain constant between 
any two consecutive relative extrema of a(t). Let t* be 
the minimum positive time such that t* is a relative 
extremum of E(t). One now updates w and [3 as follows. 

Firs t  case: M a x i m u m .  Suppose that ~(t) has a rela- 
tive maximum at t = t*. This means that Wo = L and 
the points (~(t), 0-(0) are on ffL ~o {dr 0 <~ t <i t*. Now 
define w( t* )  to be U: To update 13 .one mus} find '[3* 
such that 

{ r~&(t*) )  = r~,(E(~,)) 

0 ~< [3* ~< 1 (9) 

6633 



g 
~ 4  2/ 

0 m 
0 2 

(a) 

I 

4 

Strain 

~ 4  

/ 
0 " "  I I | 

0 2 4 6 

(b) Strain 

4 

8 i i t 

0 i i i 
0 2 4 6 

(c)  Strain 

Figure 6 F}(~ ) :  (a)  13 = 0; (b) 13 = 1; (c) 0 < [3 < 1. 

The appropr ia te  value of 13" is given by the following 
algorithm: 

2,e 8 ~  then 13" 1; (1) if 8(t*) ~> 815o or  8(t*) ~ 15o = 
81 ,  L 82 ,  L (2) if 15o < 8(t*) < 15o , then 

8(t*) - 8 ~ ~ 15o 13" = (10) 
8~0 L 8 0 ' U  

- -  [3 0 

(3) finally, if e~L < a(t*) < E l 'L ,  ~o then 

13, - -  8 ( t * )  - -  82'U15o 
8~0 L - 8~0 v (113 

In cases 2 and 3, the solution 13" is unique. Once w 
and 13 have been updated,  w ( t ) = U ,  13(0= 13" 
and ~(t)  w(, = F15(t) [8(t)] = r~ , [e ( t ) ]  for t* ~< t < t** 
where t** is the next relative min imum of e(t). 

Second case: minimum. Suppose that  e(t) has a rela- 
tive min imum at t = t*. This means that  Wo = U and 
the points (8(0, or(t)) are on FU15o for 0 ~< t < t*. Then, 
w is updated  by changing it from U to L. To  update  
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[3 one needs to find 13" such that  

rYo(8(t*)) = r~.(~(t*)) 
0 -% 13" ~< 1 (12) 

Again, the appropr ia te  value of J3* is given by the 
following algori thm 

2 ,U  (1) if e(t*)  >>- %~ or  8(t*) ~< 8~o u then 13" = 0; 
(2) i f8  l'U 8 2,U ~o < 8 ( t * ) <  ~o , t h e n  

2, U 
13. _ 8 ( t * )  - %0 

80 ,  L - -  82 ,  U (13) 
~o 13o 

81, v then (3) finally, if 8~0 u < 8(t*) ~< r 

13, 8 ( t * )  - ~ o , u  = 13o (14) 
2 ,L  80 ,  U 

815 o - -  % 

Again, in cases 2 and 3 the solution 13" is unique. 
Once w and 13 have been updated,  w(t)  = L, ]3(0 = 13" 
and ~(t) = r;~:}(8(t)) = r~,(8(t)) for t* < t < t** 
where t** is the next relative max imum of  8(0. At 
t = t**, the above procedure  is repeated to update  
w and [3. 

An analysis of the dynamics imposed on this model  
reveals that  for 0 < [3 < 1 the definition of F}(8) on the 
interval,e,  < s < 8~ 'L is superfluous. In fact, that  par t  
of the curve will never be followed under  loading and 
its definition is given only for the sake of completeness. 

By assuming a linear relat ion across the yield lines, 
the (martensite) phase fraction fu+(8(t), 13(t),w(t)) 
can be computed  as follows 

fM + Is(t), 13(0, w(t)] - 

{ fu[z(t) ,  13(0] if w(t)  = U 

JL [8(0, 13(0] if w(t)  = L (15) 

where 

f~(~, 13)- 

'0  

( 4  . 8=)(8 - 88: ) 

( 84  - -  8 2 ) ( 8 ~  ' U  - -  8 ~ '  U) 

8 ~ '  U __ 82  

8 4  - -  8 2 

8 - -  8 2 

8 4 - -  8 2 

for g ~< 8~' u 

for 8~ 'v  < 8 < ea 'w 

for 8~ 'U ~< 8 < 8~ 'U 

for 8~' u < 8 < 84 

1 

and 

A ( 8 ,  1 3 ) -  

Io 

f o r  g /> ~4  (16) 

for s ~< 8~ 

(8~ 'U - 82) (8  - 81) 

(S& - -  8 2 ) ( 8 ~  "L - -  81)  
2, U 

g15 - -  8 2 

8 4 - -  e 2 

813 __ 82 1, L) 
- - +  

84 - -  82 (84 __ 8 2 ) ( 8 ~ , L ,  813,1L3 

,1 

for s l  ~ 8 ~ 8 ~  'L 

O,L 1,L for 813 ~<s~<813 

or s~ 'L < a  < s~ 'L 

for 8/> 8~' L 

(17) 



3. A numerical example 
Consider the particular case in which st = 1, ~2 = 2, 
~3 = 6, ~4 = 7, ch = 1, (s 2 = 2, c~3 = 5 and c~4 = 6. Let = O 
~(t), for 0 ~< t ~ 7, be as shown in Fig. 7. "~ 

The stress-strain curve obtained with the dynamics 
described above corresponding to the input ~(t) is 
shown in Fig. 8. Note how the alternating series 
of dominant input extrema is stored by the model 
and results in "nested" hysteresis loops. Fig. 9 shows 
a graphical representation of the (martensite) phase 
fraction fM + as a function of the time t. The behaviour 
of #(t) is shown in Fig. 10. Fig. 11 shows the marten- 
site fraction fM § as a function of the strain ~, paramet- 
rized by the time t. Note here that for ~, < s < s4, the 
strain does not determine uniquely the phase fraction. 
In fact, for those values of ~, a whole interval of 
possible phase fractions is obtained. Finally, Fig. 12 
shows a comparison of the stresses obtained with the 
Standard Landau-Devonshire model and the model 
described here. Compare these profiles with that of 
Fig. 3b. 

The stress-strain relations incorporate the "strain 
history" through the dynamics described above. This 
model possesses three properties which are character- 
istic of the Preisach models of hysteresis [141, namely 
the wiping-out and congruency properties and the 
fading-memory property. The first one states that only 
the alternating series of dominant input extrema are 
stored by the model, while all other input extrema are 
wiped out. The congruency property consists of the 
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Figure 9 Martensite fraction fM+ as a function of time t. 
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Figure 8 Stress (output) (s(t) as a function of the strain (input) a(t), 
parametrized by the time t. 

fact that all minor hysteresis loops corresponding to 
back-and-forth variations of inputs between the same 
two consecutive extremum values, are congruent. F o r  
these reasons, this representation can be viewed as a 
simplified Preisach model. 

4. Conclusion 
An algorithm has been presented to simulate the hys- 
teresis in the stress strain laws of shape memory 
alloys. At each time step, t, the algorithm stores the 
sequences of dominant input extrema of the strain 
(input). Decreasing sequences of maxima and increas- 
ing sequences of minima in the strain result in nested 
hysteresis loops, in accordance with results observed 
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Figure 12 Comparison between the stresses obtained with (a) the standard Landau-Devonshire model and (b) the new model for the same 
strain input. 

experimentally. A comparison with the standard 
Landau Devonshire potential is provided. 

The sharp edges in the stress-strain output ob- 
tained with this algorithm are a direct result of the 
linear relations used for the first-order transition 
curves. Obviously, the use of piecewise quadratic 
or cubic polynomials would not only avoid these 
sharp edges but would also provide a closer fitting 
to the experimental results. The fact that we have 
used linear relations was made merely for simplicity 
reasons in order to illustrate the usefulness of the 
algorithm. 
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